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or M3 for a complete alternative 
method 
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Using  1sinhcosh 22 =− xx
(using wrong identity is M0) 
 
Solving quadratic 
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Obtaining a value for x in log 
form 

  
(b)(i) 2

5
3 )(1

1)(f
x

x
+−

=′  

( )( ) 2
3

2
5
3

5
3 )(1)(f

−
+−+=′′ xxx  

 
B1 
 
 
M1A1 
 3

 



     (ii) 
5
3arcsin)0f( =  

64
75)0(f,

4
5)0(f =′′=′  

...)0(f
!2

)0(f)0f(
2

+′′+′+
xx  

 ...
128
75

4
5

5
3arcsin 2 +++= xx  

 
 
 
M1 
 
 
 
 
A1A1 ft 
 3

 
  
Evaluating  )0(f)0(f ′′′ or
 
 
 

For 
128
75and

4
5

== qp  

(ft requires non-zero values) 

     
(iii) 

1.0

0

32 ...
128
25

8
5

5
3arcsin ⎥⎦

⎤
⎢⎣
⎡ +++ xxx  

 
0708.0

...000195.000625.0064350.0
=

+++=  

 
B1 ft 
 
M1 
A1 
 3

 
ft requires three non-zero terms 
 
Evaluating three non-zero terms 
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Obtaining a geometric series 
Summing a geometric series 
 
 
 
Using conjugate of denominator 
  
Expression with real 
denominator and numerator 
multiplied out 
Equating real or imaginary parts 
Correctly obtained 
 
Summing to infinity can earn all 
the M marks but no A marks 
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If B0, give B2 for 3 arguments 
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                  B1 for 2 arguments 
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Differentiating θsinr  
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Completing the square 
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Correct shape in 1st or 2nd 
quadrant 
 
Correct shape in 3rd or 4th 
quadrant 
 
Fully correct, with a ,  5a ,  9a  
shown, and zero gradient when 
crossing the y-axis 
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Integral of 2r  
Correct integral expression 
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For any ellipse 
 
Ellipse with O as RH focus 
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General Comments  
 
There was a wide range of performance on this paper, with about a quarter of the 
candidates scoring 50 marks or more (out of 60), and about a quarter scoring less than 
30 marks. Almost every candidate answered questions 1 and 2; then about 80% chose 
question 3 and only 20% chose question 4. 
 
 
Comments on Individual Questions 
 
1) Roots of a cubic equation 
 

This was by far the best answered question, with half the attempts scoring 17 
marks or more (out of 20). For many candidates this question provided a high 
proportion of their total mark. 
Parts (i) and (ii) were almost always answered correctly. 
In part (iii), most candidates mentioned the existence of complex roots; but 
relatively few earned both marks by stating that one root is real and two are 
complex. 
Parts (iv) and (v) were very often answered efficiently and correctly, although 
some candidates set off on the wrong algebraic track and wasted a lot of time in 
fruitless effort. 
Finding the new cubic equation in part (vi) was well understood, and the product 
of the new roots was very often found correctly. Many candidates did not realise 
that they had already found the sum of products in pairs, and calculated this again, 
often obtaining a value different from their answer to part (v). 

 
2) The average mark on this question was about 13. 
 

(a) Hyperbolic functions 
 
 In part (i), most candidates were able to show that )1ln( 2 −±= ccx , but 

only a few then showed correctly that this is equivalent to the desired 
result )1ln( 2 −+±= ccx . 

 In part (ii), those who used  were usually able to 
obtain  and hence write x in logarithmic form, but the other 
solution 

1coshsinh 22 −= xx
2cosh =x

5cosh −=x  was sometimes not rejected. Those who wrote the 
original equation in exponential form very rarely made any progress. 



 
(b) Inverse circular functions and Maclaurin series 
 
 In part (i), the double differentiation of )arcsin(5

3 x+  caused a surprising 
number of problems, notably sign errors. 
In part (ii), the Maclaurin series usually followed correctly from the results 
in part (i), although many forgot to divide )0(f ′′  by 2 when finding q. 
Most candidates knew what to do in part (iii), but  was often 
evaluated as , and degrees were sometimes used instead of 
radians. 

)6.0arcsin(1.0
)06.0arcsin(

 
3) Complex numbers 
 
 The average mark on this question was about 11. 
 Part (i) was generally answered well, but the responses to part (ii) ranged quite 

uniformly from very poor to fully correct. Most candidates began by considering 
, but some made no progress beyond this. A common stumbling block, 

when the geometric series had been summed, was the failure to make the 
denominator real. Careless errors such as , and sign errors, spoilt 
some otherwise good attempts, and the expression for S often included  in the 
numerator. 

SC j+

θθ nn jj e3)e3( =
3−

 In part (iii), the three cube roots were very often given correctly, but a surprising 
number of candidates had all three arguments wrong. 

 Part (iv) was also correctly answered by many candidates, although the 
connection with part (i)(B) was not always seen. Some confused  with . *w 1−w

 
4) Polar coordinates 
 
 This was the worst answered question, with an average mark of about 10. 
 In part (a)(i), most candidates did not even make the first step of expressing 

θsinr  in terms of θ . 
In part (a)(ii), there were some good attempts to sketch the curve, although few 
earned full marks; the most common error was to draw a cusp at πθ 2

1= . 

In part (a)(iii), there was a lot of good work, and the area was often found 
correctly. Many made slips in the integration, and the overall factor of 2

1  was 
sometimes missing. 
In part (b)(i), the ellipse was often drawn correctly, but only a few candidates 
could answer parts (b)(ii) and (b)(iii). 
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